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SECTION 1
INTRODUCTION

The objective of this effort was to perform thermal degradation
studies upon thick, coated graphite/epoxy laminates. The laminates were
subjected to thermal shock at elevated temperatures. Visual and NDI
examinations, as well as load testing during thermal shock and specimen
testing after thermal shock, were to be used to establish an analytical
correlation of the thermal degradation sustained at the various
temperatures.

These thermal degradation studies were performed upon coated,
48-ply laminates of AS-1/3501-6 graphite/epoxy with an orientation of
[:45/02/:45/02/:45/0/90]28.

A data base was determined for the above laminate by testing uni-

directional specimens at room temperature and 220°F.

All panels were examined visually and with ultrasonic '"C" scan
techniques prior to and after thermal exposure.

This investigation subjected the graphite composite test panels and
specimens to thermal shock temperatures of 350°, 400°, 450°, 500°, 600°,
800°, 1200°, 1600°, and 1800°F. The various tests consisted of:

(1) Exposing laminates on the coated side with

thermocouples embedded at various depths
(2) Exposing panels while under sustained compression strain
. (3) Exposing specimens while under sustained four-poiat
bend strain

(4) Rail shear testing of specimens after thermal exposure




(5) Compression testing of specimens after thermal exposure
(6) Reflective light measuruvments of exposed specimens

Data from the above tests were compiled to provide a correlation
between damage and exposure temperature.

Sufficient 48-ply panels, 9 x 9-1/2 inch, (Figure 1) were fabri-
cated with embedded chromel-alumel (Type K) thermocouples. Sensors were
12 plies, 24 plies, 36 plies, and 48 plies deep from the face which
would be exposed to the elevated temperatures. Digestive analysis of
specimens from this initial set of panels showed that fiber volume
content was 61%.

One large, 48-ply panel was then fabricated and the various panels
and specimens cut from it for the balance of the tests. This panel
contained an average of 64.4% fiber volume.

All of these cured panels were lightly abraded, cleaned, and spray
coated with a 0.0007- to 0.0009-inch~thick coat of MIL-P-23377, Type II
epoxy primer on both sides. Two coats of MIL-C~81773, Type I polyure-
thane, Light Gull Grey (No. 36440), were then applied for a total of
0.0017-inch top coat thickness on the side of the laminate which would
be exposed to thermal shock. All panels and specimens were dried at

225°F and ambient pressure prior to testing.




SECTION II
TESTING
A. COUPON TEST DATA
A summary of the AS-1/3501-6 coupon test data obtained at 220°F is
presented in Table 1. All tests were performed on dry specimens in
conditioning boxes mounted on Instron testing machines. Depending upon
the property to be tested, specimens were either unidirectional, 90°
transverse, or *#45° (in-plane shear properties). Where applicable, test
data were normalized to 62% fiber volume. These coupons were made from
three different prepreg runs with a different fiber lot in each.
B. ULTRASONIC INSPECTIONS
Ultrasonic 'C" scan examinations were performed on all panels and

specimens prior to thermal shock. These scans showed all panels to be

of sound quality prior to thermal shock. Panels which had been sub-

jected to thermal shocks when exposed to temperétures above 600°F were

found to have major delaminations when examined ultrasonically.
C. INSTRUMENTED PANEL TESTS

A Lindberg Furnace, Model 51828, with a 12- x 12-inch door opening

and a temperature capability up to 2012°F was used as the heat source
for all testing at elevated temperatures. Incorporation of stainless
steel sliding doors and ceramic insulation permitted thermal shocking
the panels on one side.

During thermal shock tests, all panels were positioned so the panel
side coated with the MIL-C~81773 material was exposed to the heat
source. Temperature gradients during thermal shock exposures of hori-

zontally mounted 9 x 9-1/2 inch, 48-ply dry panels are shown plotted in
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Figures 2 through 10. Thermocouples positioned at three locations
across the exposed face (1/16 to 1/8 inch off the surface) and embedded
at depths of 12 plies, 24 plies, 36 plies, and 48 plies were used to
obtain these temperature measurements. Temperature increments are
listed in Table 2.

These tests were performed by stabilizing the oven temperature
slightly higher than the desired exposure temperature with the sliding
steel door closed. The instrumented test panel was then positioned over
the sliding door, the door pulled aside, and ceramic insulation was
packed around the panel edges to prevent heat loss. The backside of the

panel was exposed to ambient conditions.

During panel exposure, a very faint (phenolic type) odor was first

noticed during the 500°F exposure. During the 600°F exposure the odor

was stronger. At exposures of 800°F and above, smoke was given off and
the odors were very pungent. During a 1000°F exposure, an intermittent
flame (approximately 6 inches high) was observed along one edge after
4.4 and 9.1 minutes exposure. This was not observed during a 1400°F and
the 1800°F exposure. However, a 3-foot-high fireball occurred when the
hot panel was lifted from the oven opening after the 1800°F exposure.
This panel continued to burn around the edges (8- to 12-inch-high flame)
for about 6 minutes in an ambient atmosphere.

Examination of air samples taken during the 1800°F exposure dis-~

g closed small charred particles (possible primer materials). No graphite

fiber filaments were found floating in the air currents above the test

i panel.
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The weight loss data generally follows what would be expected from
visual observation of the panels. As the surface coating chars and
fraying begins, the weight loss increases. (See Table 3.) Of interest
is one 600°F panel which showed a major delamination by ultrasonics and
only a small weight loss. Upon sectioning, the depth of the delamina-
tion was found to be 5 plies in from the coated face. The delamination,
which was not readily apparent through visual inspection, could have a
major effect upon structural integrity. When this panel was removed hot
from the oven opening and laid aside in ambient air to cool, no visual
evidence of structural degradation was present until after several hours
at ambient conditions. Then, a raised area on the coated faces was
observed. There is the possibility that the cool air shock (40°F) may

have caused this delamination. Two other panels subjected to the same

shock and handling did not show any signs of structural damage.
Table 4 shows the time at temperature for various exposures.
Ultrasonic and coating color changes due to thermal shocking are

tabulated in Table 5. All panels exposed at temperatures above 600°F

delaminated. Coating color changes began at the 400°F exposure,
Temperature measurements were hampered in some cases due to loss of
thermocouples as a result of damaged leads. In addition, when the
heating elements of the oven were on, the thermocouple which indicated
oven temperature was noisy and provided data only when power was not
flowing into the oven. To compensate for the 2-1/2-inch distance from
oven thermocouple to panel surface, the oven temperature was purposely
higher than the desired exposure temperature prior to opening of the

sliding door,

11




Data for exposures from 350° to 1000°F were read manually and
converted to millivolts and then to temperatures. Data for exposures
above 1000°F were recorded on FM tape and a printout was converted to
millivolts and then to temperatures. During the 1400°F exposure, the
equipment recording internal panel temperatures was improperly set up,
and data were obtained only briefly at the 5 and 10 minute intervals.
This was corrected on the 1800°F exposure.

During exposure of 800°F and up, it appears that degradation
effects (outgasing, delaminations, ablation) may create a cooling
effect. For example, for the 1800°F exposure the oven temperature was
1880°F, but recorded temperatures near the exposed surface were much
lower. (See Figure 10.) The exposure setup had no provision for
sweeping degradation gases away from the surface of the panel as a
result of the resin cooking off or charring.

Figure 11 shows thermal shock effects on some of these panels. No
attempt was made to identify the time at which resin charring or delami-
nations occurred during the above exposures.

D. SUSTAINED COMPRESSION LOAD TESTS

Sustained compression load tests during thermal shock on one side
of the panel at the various temperatures were performed in a Baldwin
load test machine with the test panels mounted in a fixture as shown in
Figure 12. The 4-1/2-inch-high by 9-inch-wide, 48-ply panel was mounted
in the fixture with the 0° fiber orientation in line with the compres-

sion load. (See Figure 13.) Instrumentation locations are shown in

12




Figures 14 and 15. All panels were carefully aligned and lightly
clamped along the top and bottom edges prior to application of loads and
thermal shock. (See Figure 16.)

One instrumented panel was installed in the test setup under no
compression load and subjected to temperatures of 350° to 600°F. This
L was done to verify instrumentation, recording equipment functions,
adherence of the strain gages, and temperature effects on the strain
gages on both sides of the panel. After the panel was subjected to
600°F for 16 minutes, the compression load was increased. Failure
occurred at 37,900 pounds, with strain readings of 2628 M in./in. on the

cool side and 1192 M in./in. on the hot side. Apparently, prior to load

application, the panel had bowed slightly due to thermal gradients.
The planned test procedure for thermally shocking these panels from

one side while they were under sustained compressive strain of

2500 M in./in. was as follows:
(1) The panel was installed and lightly clamped in the

fixture.

(2) Instrumentation was connected and verified as

. functioning.

(3) Recording equipment was checked out.

(4) Oven temperature was brought up to the desired level
with door closed.

(5) Sustained load (strain) was applied and maintained.

(6) The sliding door was opened.

N Data were recorded while strain was maintained.

13
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Those panels thermally shocked at temperatures of 350°, 400°, 450°,
500°, and 550°F while under 2500 4in./in. compressive strain withstood
the test successfully. Posttest ultrasonic examination showed no evi-
dence of thermal degradation. However, there was some discoloration of
the coating as a result of exposures to 450°, 500°, and 550°F.

Those panels thermally shocked at 600°F and higher failed under
this sustained compressive strain. (See Table 6.)

During thermal shock at B0O°F, it was impossible to maintain strain
at 2500 i in./in. It is suspected that the panel delaminated early in
the test and deformed. The strain trace shows strain going up when the

heat was reduced and load removed. |

During the 1200°F thermal shock test, it was again impossible to
maintain 2500 in./in strain, Load and heat adjustments did not permit

control of measured strain.

Maintaining strain at the 1600° and 1800°F thermal shock exposure
did not present a problem due to the short exposure times. Test results
may be seen in Figure 17.

Figure 18 shows the appearance of the panels after being subjected
to these tests. Again, exposures above 600°F caused major disintegra-

tion on the panel face receiving the thermal shock. Exposures at 1200°,

1600°, and 1800°F showed that the laminate could carry the sustained

strain for 2 to 3 minutes.

14




E. SUSTAINED FOUR-POINT BEND TESTS

Sustained four-point bend specimens were subjected to thermal shock
in the Baldwin load test machine. Details of the setup and fixture
arrangement are shown in Figures 19 and 20. These 1-1/2-inch-wide x
12-inch-long x 48-ply specimens were mounted in the fixture horizon-
tally, coated side down, with the 0° fiber orientation parallel to the
12-inch length. A fixture with a length/thickness support ratio of 32
was built and used for this setup. Instrumentation details may be seen
in Figures 21 and 22.

The procedure for performing thermal shock tests on the specimens
while they were subjected to 2500 g4 in./in. strain in a four—pount
bending mode was as follows:

(1) The specimen was installed and aligned in the flex
fixture.

(2) Instrumentation was connected and checked out.

(3) Recording equipment operations were verified.

(4) The oven was brought up to desired temperatures with
door closed.

(5) Sustained load (2500 M in./in. strain) was applied.

(6) The sliding door was opened.

7) Data were recorded while strain was maintained or until
failure.

Results are shown in Table 7 and Figure 17. Note that the loads

imposed upon the specimens were increased substantially during the

15




course of each test to maintain the desired 2500 Min./in. strain
loading. Specimen failures occurred during thermal shock tests at 450°F
and above. (During sustained compression load testing with thermal
shock, failures occurred at 600°F and up.) Both the 1600° and 1800°F
specimens deformed excessively due to resin matrix softening rather than
fracturing.

After specimen 4P-1 had withstood the 400°F exposure with
2500 M in./in. strain, the temperature was increased to the 450° range.
The specimen withstood the higher exposure for 9 minutes under
25004 in./in. strain before failing under a 1130 pound load.

Panel 4P-6 was then subjected to the 450°F shock, and structural
léad integrity was maintained for 16 minutes before failure occurred.

Based on similar failure load values, specimens shocked at tempera-
tures between 450° and 1200°F appear to have suffered the same amount of

thermal damage when failure occurred. Exposure times were shorter than
those demonstrated in the sustained compression load testing. This may

be attributed to higher loads imposed to maintain the sustained strain,
the presence of shear stresses, and the fact that the neutral axis was
shifting as a result of the temperature gradient through the specimen.
In brief, it was a more severe test.

Three additional noninstrumented specimens which had not been sub-
jected to thermal shock were taken to failure at room temperature for
baseline information. Their average failure load of 1970 pounds may be
used to compare performance of thermally shocked specimens. The

specimens are shown in Figures 23 and 24.

16




F. RAIL SHEAR SPECIMEN TESTS

Panels were thermally shocked individually on the coated side at
exposure temperatures of 350°, 400°, 450°, 500°, and 600°F. Exposures
were maintained until backside (cool) temperatures stabilized.
Ultrasonic examinations were performed and only one panel (Tll which had
been shocked at 600°F) showed partial delamination. These panels were
then cut in a specimen configuration as seen in Figure 25.

Originally, the gage size was determined by three main considera-
tions. The first was the 0.25-inch width needed to install the shear
strain gage. Second, analysis disclosed that the ratio of the gage
length to width should be at least 12/1 to preclude combined loads from
being imposed into the ungripped failure area. And third, the Instron
test machine with conditioning box installed for testing at 220°F was
limited to a maximum 20,000 pound pull. (During testing, this machine

capacity was found to be only 16,600 pounds.) Thus, the minimum speci-

men size believed appropriate for these tests was as seen in Figure 26
using the test fixture shown in Figure 26.

Test trials were performed to verify instrumentation, fixture
design, and procedure on two specimens. Both specimens failed in the
outer bolt holes. Therefore, it appeared that the predicted failure
stress of 17,000 psi was too low or that combined loads were entering
into the gage area due to deflections. Thus, the specimen configuration

was inadequate for the test intended. A decision was made to reduce

17




test failure loads by notching the previous specimens as seen in Figure
27. Although test results would not reflect pure shear failures, they
would give a relative comparison of thermal damage when tested at room )

temperature and 220°F.

' Data obtained in these tests are tabulated in Table 8. Most of

these modified specimens failed along the dashed line shown in Figure

: 27. Visual damage was present in specimen T11-1 through T11-6 which had
; been subjected to 600°F thermal shock. Yet, test results from

! comparable specimens SA4-1 and SA4-2 were nearly identical.

g These data may indicate no degradation of residual strength as a

i result of thermal shock when the specimens were tested at room tempera-
| ture and 220°F. However, notch effects in the specimen result in

' combined stresses. Therefore, no conclusions may be reached regarding
the residual shear strengths of specimens subjected to prior thermal

shocks.
G. COMPRESSION SPECIMEN TESTS
Coated 0.500-inch-wide x 4.400-inch~long compression specimens were
cut from 48-ply panels which had been subjected to exposure temperatures
& of 350°, 400°, 450°. 500°, and 600°F., These exposures were maintained
until backside (cool) temperatures stabilized. Ultrasonic examinations

of these panels disclosed no evidence of degradation.

Compression testing of these specimens was performed in an Instron
test machine with the load applied perpendicular to the ends of the 0°

fiber orientation. Figures 28 and 29 show the test fixtures used for

testing at 77° and 220°F in the conditioning box.

18




The resulting data (Table 9) did not conform to an expected
pattern. Although past experience has shown considerable scatter in
individual specimen data, the average values would fall into predictable
patterns. Review of panel exposure histories, postcutting inspections,
and test procedures did not show any basis for these erratic results.
Therefore, these data are not considered valid for residual compressive
strengths,

Table 10 presents the exposure temperatures and times for those
panels cut into rail shear and compressive specimens.

H. THERMAL DISCOLORATION MEASUREMENTS

Small 3/4- x 3/4- x 1/4-inch-thick coupons were exposed to high
temperatures striking the coated face. A circulating lab oven was used
for exposure temperatures of 350°, 400°, 450°, and 500°F. A number of
coupons were placed in the oven upon a piece of soft ceramic blanket
insulation. These coupons were withdrawn from the heated oven at
various times.

The Lindberg furnace was used for exposures at 600°F and up. Each
coupon was exposed individually while being held with a pair of tongs.
Additional 1200°F exposures of coupons were made to determine which of
the materials were the first to exhibit flames. The following observa-

tions were made:

(1) Coating over primer Flamed at 75 seconds
(2) Primer only Flamed at 60 seconds
(3) Graphite composite only Flamed at 50 seconds

It appears that the top coating (MIL-C-81773, Type I) and the
primer (MIL-P-23377, Type II) inhibit combustion of the AS-1/3501-6

graphite composite degradation products for only a short period of time.

19
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Light reflection measurements were performed using a Leitz Research
microscope (Figure 30) which measures reflected light quantitatively.
The coupons were hit with a constant-strength light source while the
detector was supplied with a constant voltage. The slit was 20 microns
in width and used with a 20X objective lens (Air). Readings were first
taken on coated coupons that had not been exposed to high temperatures.
These were considered as standards. Readings were then taken on coupons
that were subjected to the various high temperatures for different
periods of time. These readings were then converted to a percent of
reflected light when compared to the standards. (See Table 11.) The
results of these exposures are shown in Figure 31.

Review of top coating color changes as a result of thermal
exposure on the tegt coupons shows that, at exposures of 600°F and
above, irreversible first-ply damage can be expected with sufficient

exposure times. The damage threshold occurs when the top coat color

changes to a mauve (pale violet) shading and as the percent of reflected
light drops to approximately 80% of the unexposed coat. Color changes
from light gull grey through tan through brown do not indicate first-ply
damage unless there is evidence of the mauve shading. This mauve color
first occurs during 600°F exposures and is found during coating color
changes at the higher temperature exposures.

A plot of predicted threshold damage (time/temperature) is pre-

sented in Figure 32.
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SECTION IIl
CONCLUSIONS
Strength degradation caused by thermal shock while the laminate is
under a sustained 2500 4 in./in. strain (design limit) is related to the

type of load imposed. During shock temperature up to 1200°F, the ex-

P

posed durations for panels carrying sustained compression strain during
these tests were significantly longer than demonstrated by flex panels
undergoing the same exposure temperatures and strain (measured on ten-
sion side). Panels subjected to sustained flex loading also failed at
lower exposure temperatures than panels undergoing sustained compres-—
sion. Flexural load-carrying ability (2500 4 in./in. strain) for

1.6 minutes was demonstrated during a 1800°F exposure.

Delaminations may occur initially in panels undergoing 600°F ther-
mal shock. NDT examinations showed one of three panels exposed to 600°F
to have an internal ply delamination.

At exposure temperatures of 800°F and above, substantial structural
degradation of major proportions was very evident. Postexposure examin-
ation showed gross delaminations through the panel thickness, plies ad-
jacent to the shocked surface falling away, resin charring, and panels

h warping. High exposure temperatures caused outgassing and ablation af-
fects which momentarily reduce heat transfer through the panel.

Top-coating color changes begin at 400°F with a pale tan and pro-
gress through a mauve, deep tan, brown, and black at the high expo-
sures. Color changes of the top coating below 600°F exposure are dif-
ferent than those above 600°F. A mauve color indicates that the degrad-

ation threshold of the first ply of the composite has been reached.
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Neither visual examinations nor panel thickness measurements are
positive in determining if degradation (delamination) has occurred.
Ultrasonic examinations will confirm that a delamination has occurred ]

but will not indicate whether the resin has been permanently damaged

and/or the laminate properties reduced.
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SECTION IV
RECOMMENDATIONS
The effort in this study was performed on dry AS-1/3501-6 composite 4;
specimens and panels. Additional investigations should be made on this
composite which contains absorbed moisture in excess of 1.0% by weight.
A means should be found to determine when structural damage begins

during thermal shock. Use of acoustic devices may furnish this type of

data.

Additional test methods should be employed to determine degree of

permanent resin matrix damage thresholds. Transverse tensile tests or a

special short-beam shear test after thermal shock would provide meaning-

ful data.
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TABLE 1. AS-1/3501-6 COUPON TEST DATA AT 220°F

Property x P Cy% n %
Ejlp, msi 20.14 0.9223 msi 4.58 | 18 !
E])c, msi 19.27 1.3241 msi | 6.84 | 16 n
E22¢, msi 1.376 0.1524 msi 11.08 16
E22., msi Assume Epp. ™
E22¢
G2, msi (tangent) 0.620 0.0391 msi 6.30 7
G)2, msi (secant) - 0.330 0.0346 msi | 10.50 7
V12 0.309 0.0291 9.40 | 18
€llr, in./in. 0.01215 0.01482 12.20 | 18
t €llcs in./in. 0.00966 0.00102 10.53 14
| €22y, in./in. 0.00520 0.00094 17.79 | 16
€22¢, in./in, 0.01870 0.00263 14,06 15 i
€12, in./in. (tangent) 0.00767 0.00077 10.0 7
€12, in./in. (secant) 0.01950 0.0098 5.0 7
Olles ksi 243,96 25.21 10.33 | 18
glle» ksi 192,42 14.618 7.60 | 12
022t ksi 7.17 0.8523 11.89 18
022¢, ksi 25.73 - - -
) OSBS, ksi 13.45 0.719 0.05 18
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TABLE 3. PANEL WEIGHT LOSSES DUE TO THERMAL EXPOSURE

Total
Exposure Exposure Weight
Temperature Time Loss
(°F) (min) (%)
350 120 0.015
400 120 0.027
450 90 0.029
500 90 0.107
600 90 0.265
800 50 3.155
1000 25 6.435
1400 10 8.534
1800 10 11.071

TABLE 4. PANELS EXPOSED WITH EMBEDDED THERMOCOUPLES

Exposure Exposure
Panel No. Temperature (°F) Time (min)
T=4 350 120
T-5 400 120
T-4 450 90
T-5, T-6, T-9 500 90
T-11 600 90
T-12 800 50
T-13 1000 25
T=-5 1400 10
T-14 1800 10

Note that some panels received multiple exposures when prior
exposures did not inflict damage.




TABLE 5. PANEL EXAMINATION RESULTS
Total
Exposure Exposure Change in
Temperature Time Ultrasonic Appearance of
(°F) (min) Results Coated Surface
350 120 No change None
! 400 120 No change Color darkened very
slightly
450 90 No change Very light tan
500 90 No change Light tan
600 90 Delaminated Light brown
800 50 Delaminated Dark green to black,
major disintegration
1000 25 Delaminated Black with grey
residue, major
disintegration
1400 10 Delaminated Black, major
disintegration
1800 10 Delaminated Black, major

disintegration
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TABLE 8, RAIL SHEAR SPECIMEN TEST RESULTS
Avg Avg
Specimen Failure Recorded
Exposure Test Stress Strain
Temperature Temp (psi) (%)
(°F) (°F) Cv% CV%
350 77 28075 0.635
Cv = 11.0 cv = 22.0
220 27290 0.510
Cv = 3.5 -
400 77 28742 0.680
CV = 5.2 cvV = 13.3
220 27932 0.477
CV= 8.6 CvV =17.9
450 77 30437 0.653
CV = 11.4 CV = 16.1
220 32018 0.491
CV = 4.8 CV = 29.5
28758 0.640
Cv = 10.9 Ccv=11.9
30251 0.653
Cv = 8.2 CV = 5.5
32075 _—
cv=1.9
29270 0.642
Cv = 13.2 CcV = 26.8

32




TABLE 9. COMPRESSION SPECIMEN TEST DATA

Avg Failure Stress
(psi)
Exposure Test
Temp Temp Coefficient of
(°F) (°F) Variation (%)
350 77 90854
; CV = 14.7
225 71744
CcV = 14.7 v
400 77 64159 :
. cV =4.7
220 53085 :
CV = 6.8 i
450 77 72256 }
CV = 9.5 ;
220 57067 é
CV = 15.4 :
500 77 78840
CV = 7.5 ;
220 64142 _
Cv = 27.3 i
600 77 74617 é
CV = 14.1 E
220 61937 }
Ccve=2.8 E
cv = 5x x 100 i
x |
3
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TABLE 10. EXPOSED PANELS FOR RESIDUAL STRENGTH RAIL SHEAR
AND COMPRESSION SPECIMENS

Exposure Exposure No. of Specimens

Panel No. |Temperature (°F)| Time (min) % Wt. Loss R.S. Comp.
s-Cl 350 60 - 2 8
S-B2 350 60 - 6 -
S-C2 400 60 - 6 -
S§-Bl1 400 60 - 2 8
T-4 450 210 0.03 6 -
S-A3 450 60 0.08 2 8
T-6 500 120 0.01 6 -
T-7 500 120 0.01 2 8
T-11 600 - - 6 -
S-A4 600 60 0.17 2 8
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[i 45, 0, + 45, 0,, % 45, 0, 9ci]
28
0.250 + 0.10 INCH THICK
(3) THERMOCOUPLES 1/16 INCH
I OFF EXPOSED FACE
e 2 TYP,->
r' \ ' D 8 THERMOCOUPLES
[} : | |
| 1 I
2 TYP. | : [
! !
° |
rc-124—|--- - - ° | Lo-—oe—— —TC-12
l l
1.8 TYP. : :
| {
TC-24 -]~ - - = - = ° | | - ——— — —TC-24
[
9.5 + 0.1 ° :
0° '
TC~36———] = ~ — — — ° l 0~ — —~- — TC-36
I
1
|
\ 4
i, TC-48——| — — ———0 0~ — — = — —TC-48
\ AS CURED AS CURED
* EDGE —— EDGE
4 L |
— 9.0 + 0.1 —
TWO EACH THERMOCOUPLES EMBEDDED 1/4, 1/2, AND 3/4 OF THICKNESS
TWO EACH THERMOCOUPLES ON UNCOATED FACE
THERMOCOUPLES ARE NICKEL CHROMIUM VS NICKEL ALUMINUM TYPE K
(CHROMEL-ALUMEL)

Figure 1, Thermocouple Arrangement for Transit Measurements
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Figure 11. Effects of Thermal Shock
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Figure 12, Panel Compression Load Test Equipment Arrangement
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Figure 13, Panel Test Arrangement Details
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Figure 15.

Compression Load Panel Strain Gage Locations
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Figure 17. Comparisons of Sustained Load Tests During Thermal Shock
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Figure 21. Strain Gage Location for Four=Point Flex Specimen
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Figure 22. Thermocouple Location for Four-Point Flex Specimen
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Figure 23. Sustained Four-Point Flex Specimens After Testing
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Figure 25, Original Rail Shear Specimen Configuration
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Figure 29. Support Plates for Compression Test Fixture
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Figure 32. Predicted First-Ply Damage Based on Coating Color 1
Changes for Exposure Time vs Temperature
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